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treating (Z)-2-bromo-2-buten-1 -ol7 sequentially (-78 0C, ether-
THF) with 3 equiv of /-BuLi, 1 equiv of lithium thienylcyano-
cuprate,8 2 equiv of Me3SiCl' and 1 equiv of 2-cyclopentenone. 
Chromatographic purification provided cyclopentanone 8 in 
40-45% yield.10 Protection of the primary alcohol of 8 as a 
triisopropylsilyl (TIPS) ether" and subsequent regioselective 
enolization (-78 0C, THF) of 912 with Masamune's base13 pro
vided, after in situ triflation14 (Tf = SO2CF3), the enol triflate 
10. This intermediate was contaminated with ca. 10% of its 
double-bond regioisomer.15 Carbonylation of 10 [5% Pd(PPh3J4, 
CO (1 atm), DMF, 55 0C]16 in the presence of W.O-dimethyl-
hydroxylamine provided amide 11. Acylation of ll17 with the 
aryllithium dianion prepared from 2-(trimethylacetamido)-
bromobenzene18 gave enone 12 in an overall yield of 63% from 
cyclopentanone 9. 

Enone 12 was epoxidized with good facial selectivity (10-13:1) 
at -23 0C (/-BuOOH, Triton B) to give 13, which afforded styrene 
14 upon subsequent reaction with 3 equiv of (methylene)tri-
phenylphosphorane (THF, -78 — 23 0C). Desilylation of 14 with 
(«-Bu)4NF followed by chlorination of the liberated alcohol (MsCl, 
DMF, LiCl, -23 — 23 0C) afforded the allylic chloride 15. 
Although direct bis-aminolysis of 15 with NH3 was not clean, the 
desired cyclization was accomplished by sequential treatment of 
15 (DMF, 23 0C) with the sodium salt of trifluoroacetamide," 
followed by cleavage of the resulting bicyclic amide with KOH 
(EtOH-H2O, 80 0C). This sequence delivered the azabicyclic 
amine 16 in 35% overall yield from enone 12. 

The pivotal rearrangement of 16 was occasioned under standard 
mild conditions [paraformaldehyde (1.5 equiv), camphorsulfonic 
acid (1.0 equiv), Na2SO4 (2 equiv), CH3CN at reflux]1 to provide 
a single crystalline product 17 in 88% yield. Hydrolysis of this 
intermediate with a large excess of KOH in EtOH-H2O (2:1) 
at reflux provided, in 70% yield, (±)-dehydrotubifoline (3). The 
synthetic product was indentical with an authentic sample prepared 
by acid treatment of natural akuammicine.20 

The chemistry outlined herein defines a short, highly stereo-
controlled, new strategy for preparing Strychnos alkaloids. The 
overall yield of (±)-dehydrotubifoline from 2-cyclopentenone was 
6%, and this conversion was accomplished in only 12 chemical 
operations. Besides the key aza-Cope-Mannich rearrangement 
step (16 -» 17), other notable transformations include 1,4-addition 
of a l-hydroxy-2-butenyl cuprate (7 - • 8) and formation of an 
unsaturated Ar-methyl-./V"-methoxyamide by palladium-catalyzed 
carbonylation-aminolysis of an enol triflate (10 -*• 11). The 
extension of this approach to the preparation of strychnine and 
other complex Strychnos alkaloids is under investigation. 
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We report the first optical absorption spectra of a solvated 
electron with clearly resolved structures. The results presented 
in this communication were obtained via time-resolved pulse ra-
diolysis experiments on tetrahydrofuran (THF), mixed cis- and 
?ranj-2,5-dimethyltetrahydrofuran (2,5-DMTHF), and 2,2,5,5-
tetramethyltetrahydrofuran (2,5-TMTHF) solutions containing 
millimolar concentrations of sodium salts. 

It has been known for quite some time that the properties of 
the solvated electron in solutions of electrolytes in moderately polar 
solvents differ considerably from its properties in the same solvents 
but in the absence of electrolytes.1'2 Specifically, for sodium salts 
in tetrahydrofuran (THF), the absorption maximum occurs at 
880 nm (1.41 eV), compared with 2120 nm (0.58 eV) for C801 in 
neat THF.3 This phenomenon is attributed to the formation of 
a new species (e",M+).4 The magnitude of the spectral shift is 
not a monotonic function of the radius of the bare cation5 and 
is, for example, smaller for lithium than for sodium. It appears 
to depend critically on the degree of solvation of the alkali-metal 
cation, which controls the equilibrium distance between the positive 
charge and the electron. 

In this study we investigated the influence of the structure of 
the solvent molecule on the spectral and kinetic properties of the 
(e",Na+) moiety. 2,5-DMTHF and 2,5-TMTHF were selected 
as interesting media since their dipole moments and dielectric 
constants are similar to those of unsubstituted THF, yet their 
ability to tightly solvate alkali-metal cations is significantly di
minished as a result of the steric hindrance generated by the 
presence of two or four methyl groups in the a positions. 

Our time-resolved pulse radiolysis experiments were performed 
on purified samples of the above ethers that contained 5-20 mM 
sodium salts. Tetraphenylboron sodium was used as the source 
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Figure 1. Room temperature spectra of (e",Na+) in 2,5-DMTHF (solid 
line) and THF (dotted line). The scaling is arbitrary. 
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Figure 2. Room temperature spectra of (e~,Na+) in 2,5-TMTHF (solid 
line) and THF (dotted line). The scaling is arbitrary. 

of Na+ cations in the THF and 2,5-DMTHF measurements. Due 
to its insolubility in 2,5-TMTHF, the much more soluble tetra-

kis[3,5-bis(trifluoromethyl)phenyl] boron sodium was used instead. 
The experimental details will be published later. 

The optical absorption spectrum of (e",Na+) in 2,5-DMTHF 
consists of two clearly resolved peaks at 575 (2.15 eV) and 735 
nm (1.69 eV) and a shoulder at longer wavelengths (Figure 1). 
The main peak is blue-shifted by 0.28 eV in comparison with the 
same salt in THF. There are three resolved peaks at 570 (2.17 
eV), 720 (1.72 eV), and 780 nm (1.59 eV) in 2,5-TMTHF (Figure 
2). The blue shift is not very different from the one in 2,5-
DMTHF (the two highest peaks are shifted by 0.31 and 0.18 eV 
with respect to THF), but the spectral features are much sharper 
and the overall width of the spectrum is greatly reduced. While 
the possibility of a fast exchange between different sites remains 
open, the temporal behavior of the spectra down to approximately 
1 ns supports the notion of a single chemical species (e~,Na+) being 
responsible for all the bands. Unfortunately, the assignment of 
the observed bands in terms of several bound —• bound electronic 
transitions and one bound —• continuum transition remains a 
nontrivial and ambiguous task, especially if (e~,Na+) is not 
spherically symmetric. 

The results of the variable-temperature work, as well as mea
surements of electron attachment rates to various scavengers, will 
be presented in a more comprehensive article. 

We will gladly make available the complete set of experimental 
data points to interested researchers. 
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Composite crystals consist of two or more sublattices coexisting 
in the same crystal. The chemical composition of the crystal is 
therefore a function of the ratio of the sublattice volumes and is 
nonstoichiometric when the sublattices are incommensurate.1 

Examples are the organic superconductor (BEDT-TTF)4Hg2 89Br8
2 

and the metal (BEDO-TTF)24I3.
3 (BEDT-TTF = 3,4:3',4'-

bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalene, below referred to 
as ET; BEDO-TTF = 3,4:3',4'-bis(ethylenedioxo)-2,2',5,5'-tet-
rathiafulvalene.) The composite metal (ET)Hg0776(SCN)2, 
synthesized by Wang et al.,4 is particularly unusual as the Hg 
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